@@ -145,7 +145,7 @@ class EMLDAOptimizer extends LDAOptimizer {
145145 this
146146 }
147147
148- private [clustering] override def next (): EMLDAOptimizer = {
148+ override private [clustering] def next (): EMLDAOptimizer = {
149149 require(graph != null , " graph is null, EMLDAOptimizer not initialized." )
150150
151151 val eta = topicConcentration
@@ -202,7 +202,7 @@ class EMLDAOptimizer extends LDAOptimizer {
202202 graph.vertices.filter(isTermVertex).values.fold(BDV .zeros[Double ](numTopics))(_ += _)
203203 }
204204
205- private [clustering] override def getLDAModel (iterationTimes : Array [Double ]): LDAModel = {
205+ override private [clustering] def getLDAModel (iterationTimes : Array [Double ]): LDAModel = {
206206 require(graph != null , " graph is null, EMLDAOptimizer not initialized." )
207207 this .graphCheckpointer.deleteAllCheckpoints()
208208 new DistributedLDAModel (this , iterationTimes)
@@ -295,7 +295,7 @@ class OnlineLDAOptimizer extends LDAOptimizer {
295295 this
296296 }
297297
298- private [clustering] override def initialize (docs : RDD [(Long , Vector )], lda : LDA ): LDAOptimizer = {
298+ override private [clustering] def initialize (docs : RDD [(Long , Vector )], lda : LDA ): LDAOptimizer = {
299299 this .k = lda.getK
300300 this .corpusSize = docs.count()
301301 this .vocabSize = docs.first()._2.size
@@ -318,7 +318,7 @@ class OnlineLDAOptimizer extends LDAOptimizer {
318318 * model, and it will update the topic distribution adaptively for the terms appearing in the
319319 * subset.
320320 */
321- private [clustering] override def next (): OnlineLDAOptimizer = {
321+ override private [clustering] def next (): OnlineLDAOptimizer = {
322322 iteration += 1
323323 val batch = docs.sample(withReplacement = true , miniBatchFraction, randomGenerator.nextLong())
324324 if (batch.isEmpty()) return this
0 commit comments