@@ -39,18 +39,18 @@ class LogisticRegressionPMMLModelExportSuite extends FunSuite{
3939 // assert that the PMML format is as expected
4040 assert(logisticModelExport.isInstanceOf [PMMLModelExport ])
4141 var pmml = logisticModelExport.asInstanceOf [PMMLModelExport ].getPmml()
42- assert(pmml.getHeader().getDescription() === " logistic regression: if predicted value > 0.5, the outcome is positive, or negative otherwise " )
42+ assert(pmml.getHeader().getDescription() === " logistic regression" )
4343 // check that the number of fields match the weights size
4444 assert(pmml.getDataDictionary().getNumberOfFields() === logisticRegressionModel.weights.size + 1 )
4545 // this verify that there is a model attached to the pmml object and the model is a regression one
46- // it also verifies that the pmml model has a regression table (for target category YES ) with the same number of predictors of the model weights
46+ // it also verifies that the pmml model has a regression table (for target category 1 ) with the same number of predictors of the model weights
4747 assert(pmml.getModels().get(0 ).asInstanceOf [RegressionModel ]
48- .getRegressionTables().get(0 ).getTargetCategory() === " YES " )
48+ .getRegressionTables().get(0 ).getTargetCategory() === " 1 " )
4949 assert(pmml.getModels().get(0 ).asInstanceOf [RegressionModel ]
5050 .getRegressionTables().get(0 ).getNumericPredictors().size() === logisticRegressionModel.weights.size)
51- // verify if there is a second table with target category NO and no predictors
51+ // verify if there is a second table with target category 0 and no predictors
5252 assert(pmml.getModels().get(0 ).asInstanceOf [RegressionModel ]
53- .getRegressionTables().get(1 ).getTargetCategory() === " NO " )
53+ .getRegressionTables().get(1 ).getTargetCategory() === " 0 " )
5454 assert(pmml.getModels().get(0 ).asInstanceOf [RegressionModel ]
5555 .getRegressionTables().get(1 ).getNumericPredictors().size() === 0 )
5656
0 commit comments