Skip to content

Commit 7830d3b

Browse files
committed
mark GMM experimental
1 parent a378496 commit 7830d3b

File tree

2 files changed

+11
-3
lines changed

2 files changed

+11
-3
lines changed

mllib/src/main/scala/org/apache/spark/mllib/clustering/GaussianMixture.scala

Lines changed: 6 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -19,15 +19,18 @@ package org.apache.spark.mllib.clustering
1919

2020
import scala.collection.mutable.IndexedSeq
2121

22-
import breeze.linalg.{DenseVector => BreezeVector, DenseMatrix => BreezeMatrix, diag, Transpose}
22+
import breeze.linalg.{DenseMatrix => BreezeMatrix, DenseVector => BreezeVector, Transpose, diag}
2323

24-
import org.apache.spark.mllib.linalg.{Matrices, Vector, Vectors, DenseVector, DenseMatrix, BLAS}
24+
import org.apache.spark.annotation.Experimental
25+
import org.apache.spark.mllib.linalg.{BLAS, DenseMatrix, DenseVector, Matrices, Vector, Vectors}
2526
import org.apache.spark.mllib.stat.distribution.MultivariateGaussian
2627
import org.apache.spark.mllib.util.MLUtils
2728
import org.apache.spark.rdd.RDD
2829
import org.apache.spark.util.Utils
2930

3031
/**
32+
* :: Experimental ::
33+
*
3134
* This class performs expectation maximization for multivariate Gaussian
3235
* Mixture Models (GMMs). A GMM represents a composite distribution of
3336
* independent Gaussian distributions with associated "mixing" weights
@@ -44,6 +47,7 @@ import org.apache.spark.util.Utils
4447
* is considered to have occurred.
4548
* @param maxIterations The maximum number of iterations to perform
4649
*/
50+
@Experimental
4751
class GaussianMixture private (
4852
private var k: Int,
4953
private var convergenceTol: Double,

mllib/src/main/scala/org/apache/spark/mllib/clustering/GaussianMixtureModel.scala

Lines changed: 5 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -19,12 +19,15 @@ package org.apache.spark.mllib.clustering
1919

2020
import breeze.linalg.{DenseVector => BreezeVector}
2121

22-
import org.apache.spark.rdd.RDD
22+
import org.apache.spark.annotation.Experimental
2323
import org.apache.spark.mllib.linalg.Vector
2424
import org.apache.spark.mllib.stat.distribution.MultivariateGaussian
2525
import org.apache.spark.mllib.util.MLUtils
26+
import org.apache.spark.rdd.RDD
2627

2728
/**
29+
* :: Experimental ::
30+
*
2831
* Multivariate Gaussian Mixture Model (GMM) consisting of k Gaussians, where points
2932
* are drawn from each Gaussian i=1..k with probability w(i); mu(i) and sigma(i) are
3033
* the respective mean and covariance for each Gaussian distribution i=1..k.
@@ -35,6 +38,7 @@ import org.apache.spark.mllib.util.MLUtils
3538
* @param sigma Covariance maxtrix for each Gaussian in the mixture, where sigma(i) is the
3639
* covariance matrix for Gaussian i
3740
*/
41+
@Experimental
3842
class GaussianMixtureModel(
3943
val weights: Array[Double],
4044
val gaussians: Array[MultivariateGaussian]) extends Serializable {

0 commit comments

Comments
 (0)