@@ -19,15 +19,18 @@ package org.apache.spark.mllib.clustering
1919
2020import scala .collection .mutable .IndexedSeq
2121
22- import breeze .linalg .{DenseVector => BreezeVector , DenseMatrix => BreezeMatrix , diag , Transpose }
22+ import breeze .linalg .{DenseMatrix => BreezeMatrix , DenseVector => BreezeVector , Transpose , diag }
2323
24- import org .apache .spark .mllib .linalg .{Matrices , Vector , Vectors , DenseVector , DenseMatrix , BLAS }
24+ import org .apache .spark .annotation .Experimental
25+ import org .apache .spark .mllib .linalg .{BLAS , DenseMatrix , DenseVector , Matrices , Vector , Vectors }
2526import org .apache .spark .mllib .stat .distribution .MultivariateGaussian
2627import org .apache .spark .mllib .util .MLUtils
2728import org .apache .spark .rdd .RDD
2829import org .apache .spark .util .Utils
2930
3031/**
32+ * :: Experimental ::
33+ *
3134 * This class performs expectation maximization for multivariate Gaussian
3235 * Mixture Models (GMMs). A GMM represents a composite distribution of
3336 * independent Gaussian distributions with associated "mixing" weights
@@ -44,6 +47,7 @@ import org.apache.spark.util.Utils
4447 * is considered to have occurred.
4548 * @param maxIterations The maximum number of iterations to perform
4649 */
50+ @ Experimental
4751class GaussianMixture private (
4852 private var k : Int ,
4953 private var convergenceTol : Double ,
0 commit comments