@@ -893,16 +893,16 @@ def test_model_params(self):
893893 self .assertIsNone (stkm .latestModel ())
894894 self .assertRaises (ValueError , stkm .trainOn , [0.0 , 1.0 ])
895895
896- stkm .setInitialCenters ([[0.0 , 0.0 ], [1.0 , 1.0 ]], [1.0 , 1.0 ])
896+ stkm .setInitialCenters (
897+ centers = [[0.0 , 0.0 ], [1.0 , 1.0 ]], weights = [1.0 , 1.0 ])
897898 self .assertEquals (
898899 stkm .latestModel ().centers , [[0.0 , 0.0 ], [1.0 , 1.0 ]])
899900 self .assertEquals (stkm .latestModel ().clusterWeights , [1.0 , 1.0 ])
900901
901902 def test_accuracy_for_single_center (self ):
902- """Test that the parameters obtained are correct for a single center."""
903- numBatches , numPoints , k , d , r , seed = 5 , 5 , 1 , 5 , 0.1 , 0
903+ """Test that parameters obtained are correct for a single center."""
904904 centers , batches = self .streamingKMeansDataGenerator (
905- numBatches , numPoints , k , d , r , seed )
905+ batches = 5 , numPoints = 5 , k = 1 , d = 5 , r = 0.1 , seed = 0 )
906906 stkm = StreamingKMeans (1 )
907907 stkm .setInitialCenters ([[0. , 0. , 0. , 0. , 0. ]], [0. ])
908908 input_stream = self .ssc .queueStream (
@@ -914,7 +914,7 @@ def test_accuracy_for_single_center(self):
914914 self ._ssc_wait (t , 10.0 , 0.01 )
915915 self .assertEquals (stkm .latestModel ().clusterWeights , [25.0 ])
916916 realCenters = array_sum (array (centers ), axis = 0 )
917- for i in range (d ):
917+ for i in range (5 ):
918918 modelCenters = stkm .latestModel ().centers [0 ][i ]
919919 self .assertAlmostEqual (centers [0 ][i ], modelCenters , 1 )
920920 self .assertAlmostEqual (realCenters [i ], modelCenters , 1 )
@@ -934,8 +934,8 @@ def test_trainOn_model(self):
934934 """Test the model on toy data with four clusters."""
935935 stkm = StreamingKMeans ()
936936 initCenters = [[1.0 , 1.0 ], [- 1.0 , 1.0 ], [- 1.0 , - 1.0 ], [1.0 , - 1.0 ]]
937- weights = [ 1.0 , 1.0 , 1.0 , 1.0 ]
938- stkm . setInitialCenters ( initCenters , weights )
937+ stkm . setInitialCenters (
938+ centers = initCenters , weights = [ 1.0 , 1.0 , 1.0 , 1.0 ] )
939939
940940 # Create a toy dataset by setting a tiny offest for each point.
941941 offsets = [[0 , 0.1 ], [0 , - 0.1 ], [0.1 , 0 ], [- 0.1 , 0 ]]
@@ -958,10 +958,10 @@ def test_trainOn_model(self):
958958
959959 def test_predictOn_model (self ):
960960 """Test that the model predicts correctly on toy data."""
961- initCenters = [[1.0 , 1.0 ], [- 1.0 , 1.0 ], [- 1.0 , - 1.0 ], [1.0 , - 1.0 ]]
962- weights = [1.0 , 1.0 , 1.0 , 1.0 ]
963961 stkm = StreamingKMeans ()
964- stkm ._model = StreamingKMeansModel (initCenters , weights )
962+ stkm ._model = StreamingKMeansModel (
963+ clusterCenters = [[1.0 , 1.0 ], [- 1.0 , 1.0 ], [- 1.0 , - 1.0 ], [1.0 , - 1.0 ]],
964+ clusterWeights = [1.0 , 1.0 , 1.0 , 1.0 ])
965965
966966 predict_data = [[[1.5 , 1.5 ]], [[- 1.5 , 1.5 ]], [[- 1.5 , - 1.5 ]], [[1.5 , - 1.5 ]]]
967967 predict_data = [sc .parallelize (batch , 1 ) for batch in predict_data ]
0 commit comments