@@ -217,7 +217,7 @@ class PairRDDFunctions[K, V](self: RDD[(K, V)])
217217 * Return approximate number of distinct values for each key in this RDD.
218218 * The accuracy of approximation can be controlled through the relative standard deviation
219219 * (relativeSD) parameter, which also controls the amount of memory used. Lower values result in
220- * more accurate counts but increase the memory footprint and vise versa. Uses the provided
220+ * more accurate counts but increase the memory footprint and vice versa. Uses the provided
221221 * Partitioner to partition the output RDD.
222222 */
223223 def countApproxDistinctByKey (relativeSD : Double , partitioner : Partitioner ): RDD [(K , Long )] = {
@@ -232,7 +232,7 @@ class PairRDDFunctions[K, V](self: RDD[(K, V)])
232232 * Return approximate number of distinct values for each key in this RDD.
233233 * The accuracy of approximation can be controlled through the relative standard deviation
234234 * (relativeSD) parameter, which also controls the amount of memory used. Lower values result in
235- * more accurate counts but increase the memory footprint and vise versa. HashPartitions the
235+ * more accurate counts but increase the memory footprint and vice versa. HashPartitions the
236236 * output RDD into numPartitions.
237237 *
238238 */
@@ -244,7 +244,7 @@ class PairRDDFunctions[K, V](self: RDD[(K, V)])
244244 * Return approximate number of distinct values for each key this RDD.
245245 * The accuracy of approximation can be controlled through the relative standard deviation
246246 * (relativeSD) parameter, which also controls the amount of memory used. Lower values result in
247- * more accurate counts but increase the memory footprint and vise versa. The default value of
247+ * more accurate counts but increase the memory footprint and vice versa. The default value of
248248 * relativeSD is 0.05. Hash-partitions the output RDD using the existing partitioner/parallelism
249249 * level.
250250 */
0 commit comments