Skip to content

Commit 536533c

Browse files
Feynman Liangjkbradley
authored andcommitted
[SPARK-9005] [MLLIB] Fix RegressionMetrics computation of explainedVariance
Fixes implementation of `explainedVariance` and `r2` to be consistent with their definitions as described in [SPARK-9005](https://issues.apache.org/jira/browse/SPARK-9005). Author: Feynman Liang <[email protected]> Closes apache#7361 from feynmanliang/SPARK-9005-RegressionMetrics-bugs and squashes the following commits: f1112fc [Feynman Liang] Add explainedVariance formula 1a3d098 [Feynman Liang] SROwen code review comments 08a0e1b [Feynman Liang] Fix pyspark tests db8605a [Feynman Liang] Style fix bde9761 [Feynman Liang] Fix RegressionMetrics tests, relax assumption predictor is unbiased c235de0 [Feynman Liang] Fix RegressionMetrics tests 4c4e56f [Feynman Liang] Fix RegressionMetrics computation of explainedVariance and r2
1 parent ec9b621 commit 536533c

File tree

3 files changed

+83
-15
lines changed

3 files changed

+83
-15
lines changed

mllib/src/main/scala/org/apache/spark/mllib/evaluation/RegressionMetrics.scala

Lines changed: 17 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -53,14 +53,22 @@ class RegressionMetrics(predictionAndObservations: RDD[(Double, Double)]) extend
5353
)
5454
summary
5555
}
56+
private lazy val SSerr = math.pow(summary.normL2(1), 2)
57+
private lazy val SStot = summary.variance(0) * (summary.count - 1)
58+
private lazy val SSreg = {
59+
val yMean = summary.mean(0)
60+
predictionAndObservations.map {
61+
case (prediction, _) => math.pow(prediction - yMean, 2)
62+
}.sum()
63+
}
5664

5765
/**
58-
* Returns the explained variance regression score.
59-
* explainedVariance = 1 - variance(y - \hat{y}) / variance(y)
60-
* Reference: [[http://en.wikipedia.org/wiki/Explained_variation]]
66+
* Returns the variance explained by regression.
67+
* explainedVariance = \sum_i (\hat{y_i} - \bar{y})^2 / n
68+
* @see [[https://en.wikipedia.org/wiki/Fraction_of_variance_unexplained]]
6169
*/
6270
def explainedVariance: Double = {
63-
1 - summary.variance(1) / summary.variance(0)
71+
SSreg / summary.count
6472
}
6573

6674
/**
@@ -76,23 +84,22 @@ class RegressionMetrics(predictionAndObservations: RDD[(Double, Double)]) extend
7684
* expected value of the squared error loss or quadratic loss.
7785
*/
7886
def meanSquaredError: Double = {
79-
val rmse = summary.normL2(1) / math.sqrt(summary.count)
80-
rmse * rmse
87+
SSerr / summary.count
8188
}
8289

8390
/**
8491
* Returns the root mean squared error, which is defined as the square root of
8592
* the mean squared error.
8693
*/
8794
def rootMeanSquaredError: Double = {
88-
summary.normL2(1) / math.sqrt(summary.count)
95+
math.sqrt(this.meanSquaredError)
8996
}
9097

9198
/**
92-
* Returns R^2^, the coefficient of determination.
93-
* Reference: [[http://en.wikipedia.org/wiki/Coefficient_of_determination]]
99+
* Returns R^2^, the unadjusted coefficient of determination.
100+
* @see [[http://en.wikipedia.org/wiki/Coefficient_of_determination]]
94101
*/
95102
def r2: Double = {
96-
1 - math.pow(summary.normL2(1), 2) / (summary.variance(0) * (summary.count - 1))
103+
1 - SSerr / SStot
97104
}
98105
}

mllib/src/test/scala/org/apache/spark/mllib/evaluation/RegressionMetricsSuite.scala

Lines changed: 65 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -23,24 +23,85 @@ import org.apache.spark.mllib.util.TestingUtils._
2323

2424
class RegressionMetricsSuite extends SparkFunSuite with MLlibTestSparkContext {
2525

26-
test("regression metrics") {
26+
test("regression metrics for unbiased (includes intercept term) predictor") {
27+
/* Verify results in R:
28+
preds = c(2.25, -0.25, 1.75, 7.75)
29+
obs = c(3.0, -0.5, 2.0, 7.0)
30+
31+
SStot = sum((obs - mean(obs))^2)
32+
SSreg = sum((preds - mean(obs))^2)
33+
SSerr = sum((obs - preds)^2)
34+
35+
explainedVariance = SSreg / length(obs)
36+
explainedVariance
37+
> [1] 8.796875
38+
meanAbsoluteError = mean(abs(preds - obs))
39+
meanAbsoluteError
40+
> [1] 0.5
41+
meanSquaredError = mean((preds - obs)^2)
42+
meanSquaredError
43+
> [1] 0.3125
44+
rmse = sqrt(meanSquaredError)
45+
rmse
46+
> [1] 0.559017
47+
r2 = 1 - SSerr / SStot
48+
r2
49+
> [1] 0.9571734
50+
*/
51+
val predictionAndObservations = sc.parallelize(
52+
Seq((2.25, 3.0), (-0.25, -0.5), (1.75, 2.0), (7.75, 7.0)), 2)
53+
val metrics = new RegressionMetrics(predictionAndObservations)
54+
assert(metrics.explainedVariance ~== 8.79687 absTol 1E-5,
55+
"explained variance regression score mismatch")
56+
assert(metrics.meanAbsoluteError ~== 0.5 absTol 1E-5, "mean absolute error mismatch")
57+
assert(metrics.meanSquaredError ~== 0.3125 absTol 1E-5, "mean squared error mismatch")
58+
assert(metrics.rootMeanSquaredError ~== 0.55901 absTol 1E-5,
59+
"root mean squared error mismatch")
60+
assert(metrics.r2 ~== 0.95717 absTol 1E-5, "r2 score mismatch")
61+
}
62+
63+
test("regression metrics for biased (no intercept term) predictor") {
64+
/* Verify results in R:
65+
preds = c(2.5, 0.0, 2.0, 8.0)
66+
obs = c(3.0, -0.5, 2.0, 7.0)
67+
68+
SStot = sum((obs - mean(obs))^2)
69+
SSreg = sum((preds - mean(obs))^2)
70+
SSerr = sum((obs - preds)^2)
71+
72+
explainedVariance = SSreg / length(obs)
73+
explainedVariance
74+
> [1] 8.859375
75+
meanAbsoluteError = mean(abs(preds - obs))
76+
meanAbsoluteError
77+
> [1] 0.5
78+
meanSquaredError = mean((preds - obs)^2)
79+
meanSquaredError
80+
> [1] 0.375
81+
rmse = sqrt(meanSquaredError)
82+
rmse
83+
> [1] 0.6123724
84+
r2 = 1 - SSerr / SStot
85+
r2
86+
> [1] 0.9486081
87+
*/
2788
val predictionAndObservations = sc.parallelize(
2889
Seq((2.5, 3.0), (0.0, -0.5), (2.0, 2.0), (8.0, 7.0)), 2)
2990
val metrics = new RegressionMetrics(predictionAndObservations)
30-
assert(metrics.explainedVariance ~== 0.95717 absTol 1E-5,
91+
assert(metrics.explainedVariance ~== 8.85937 absTol 1E-5,
3192
"explained variance regression score mismatch")
3293
assert(metrics.meanAbsoluteError ~== 0.5 absTol 1E-5, "mean absolute error mismatch")
3394
assert(metrics.meanSquaredError ~== 0.375 absTol 1E-5, "mean squared error mismatch")
3495
assert(metrics.rootMeanSquaredError ~== 0.61237 absTol 1E-5,
3596
"root mean squared error mismatch")
36-
assert(metrics.r2 ~== 0.94861 absTol 1E-5, "r2 score mismatch")
97+
assert(metrics.r2 ~== 0.94860 absTol 1E-5, "r2 score mismatch")
3798
}
3899

39100
test("regression metrics with complete fitting") {
40101
val predictionAndObservations = sc.parallelize(
41102
Seq((3.0, 3.0), (0.0, 0.0), (2.0, 2.0), (8.0, 8.0)), 2)
42103
val metrics = new RegressionMetrics(predictionAndObservations)
43-
assert(metrics.explainedVariance ~== 1.0 absTol 1E-5,
104+
assert(metrics.explainedVariance ~== 8.6875 absTol 1E-5,
44105
"explained variance regression score mismatch")
45106
assert(metrics.meanAbsoluteError ~== 0.0 absTol 1E-5, "mean absolute error mismatch")
46107
assert(metrics.meanSquaredError ~== 0.0 absTol 1E-5, "mean squared error mismatch")

python/pyspark/mllib/evaluation.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -82,7 +82,7 @@ class RegressionMetrics(JavaModelWrapper):
8282
... (2.5, 3.0), (0.0, -0.5), (2.0, 2.0), (8.0, 7.0)])
8383
>>> metrics = RegressionMetrics(predictionAndObservations)
8484
>>> metrics.explainedVariance
85-
0.95...
85+
8.859...
8686
>>> metrics.meanAbsoluteError
8787
0.5...
8888
>>> metrics.meanSquaredError

0 commit comments

Comments
 (0)