Skip to content

Commit 4487f20

Browse files
committed
remove experimental tag from each stat method because Statistics is experimental already
1 parent 3cd969a commit 4487f20

File tree

1 file changed

+2
-19
lines changed

1 file changed

+2
-19
lines changed

mllib/src/main/scala/org/apache/spark/mllib/stat/Statistics.scala

Lines changed: 2 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -26,36 +26,32 @@ import org.apache.spark.mllib.stat.test.{ChiSqTest, ChiSqTestResult}
2626
import org.apache.spark.rdd.RDD
2727

2828
/**
29+
* :: Experimental ::
2930
* API for statistical functions in MLlib.
3031
*/
3132
@Experimental
3233
object Statistics {
3334

3435
/**
35-
* :: Experimental ::
3636
* Computes column-wise summary statistics for the input RDD[Vector].
3737
*
3838
* @param X an RDD[Vector] for which column-wise summary statistics are to be computed.
3939
* @return [[MultivariateStatisticalSummary]] object containing column-wise summary statistics.
4040
*/
41-
@Experimental
4241
def colStats(X: RDD[Vector]): MultivariateStatisticalSummary = {
4342
new RowMatrix(X).computeColumnSummaryStatistics()
4443
}
4544

4645
/**
47-
* :: Experimental ::
4846
* Compute the Pearson correlation matrix for the input RDD of Vectors.
4947
* Columns with 0 covariance produce NaN entries in the correlation matrix.
5048
*
5149
* @param X an RDD[Vector] for which the correlation matrix is to be computed.
5250
* @return Pearson correlation matrix comparing columns in X.
5351
*/
54-
@Experimental
5552
def corr(X: RDD[Vector]): Matrix = Correlations.corrMatrix(X)
5653

5754
/**
58-
* :: Experimental ::
5955
* Compute the correlation matrix for the input RDD of Vectors using the specified method.
6056
* Methods currently supported: `pearson` (default), `spearman`.
6157
*
@@ -69,11 +65,9 @@ object Statistics {
6965
* Supported: `pearson` (default), `spearman`
7066
* @return Correlation matrix comparing columns in X.
7167
*/
72-
@Experimental
7368
def corr(X: RDD[Vector], method: String): Matrix = Correlations.corrMatrix(X, method)
7469

7570
/**
76-
* :: Experimental ::
7771
* Compute the Pearson correlation for the input RDDs.
7872
* Returns NaN if either vector has 0 variance.
7973
*
@@ -84,11 +78,9 @@ object Statistics {
8478
* @param y RDD[Double] of the same cardinality as x.
8579
* @return A Double containing the Pearson correlation between the two input RDD[Double]s
8680
*/
87-
@Experimental
8881
def corr(x: RDD[Double], y: RDD[Double]): Double = Correlations.corr(x, y)
8982

9083
/**
91-
* :: Experimental ::
9284
* Compute the correlation for the input RDDs using the specified method.
9385
* Methods currently supported: `pearson` (default), `spearman`.
9486
*
@@ -99,14 +91,12 @@ object Statistics {
9991
* @param y RDD[Double] of the same cardinality as x.
10092
* @param method String specifying the method to use for computing correlation.
10193
* Supported: `pearson` (default), `spearman`
102-
*@return A Double containing the correlation between the two input RDD[Double]s using the
94+
* @return A Double containing the correlation between the two input RDD[Double]s using the
10395
* specified method.
10496
*/
105-
@Experimental
10697
def corr(x: RDD[Double], y: RDD[Double], method: String): Double = Correlations.corr(x, y, method)
10798

10899
/**
109-
* :: Experimental ::
110100
* Conduct Pearson's chi-squared goodness of fit test of the observed data against the
111101
* expected distribution.
112102
*
@@ -120,13 +110,11 @@ object Statistics {
120110
* @return ChiSquaredTest object containing the test statistic, degrees of freedom, p-value,
121111
* the method used, and the null hypothesis.
122112
*/
123-
@Experimental
124113
def chiSqTest(observed: Vector, expected: Vector): ChiSqTestResult = {
125114
ChiSqTest.chiSquared(observed, expected)
126115
}
127116

128117
/**
129-
* :: Experimental ::
130118
* Conduct Pearson's chi-squared goodness of fit test of the observed data against the uniform
131119
* distribution, with each category having an expected frequency of `1 / observed.size`.
132120
*
@@ -136,23 +124,19 @@ object Statistics {
136124
* @return ChiSquaredTest object containing the test statistic, degrees of freedom, p-value,
137125
* the method used, and the null hypothesis.
138126
*/
139-
@Experimental
140127
def chiSqTest(observed: Vector): ChiSqTestResult = ChiSqTest.chiSquared(observed)
141128

142129
/**
143-
* :: Experimental ::
144130
* Conduct Pearson's independence test on the input contingency matrix, which cannot contain
145131
* negative entries or columns or rows that sum up to 0.
146132
*
147133
* @param observed The contingency matrix (containing either counts or relative frequencies).
148134
* @return ChiSquaredTest object containing the test statistic, degrees of freedom, p-value,
149135
* the method used, and the null hypothesis.
150136
*/
151-
@Experimental
152137
def chiSqTest(observed: Matrix): ChiSqTestResult = ChiSqTest.chiSquaredMatrix(observed)
153138

154139
/**
155-
* :: Experimental ::
156140
* Conduct Pearson's independence test for every feature against the label across the input RDD.
157141
* For each feature, the (feature, label) pairs are converted into a contingency matrix for which
158142
* the chi-squared statistic is computed. All label and feature values must be categorical.
@@ -162,7 +146,6 @@ object Statistics {
162146
* @return an array containing the ChiSquaredTestResult for every feature against the label.
163147
* The order of the elements in the returned array reflects the order of input features.
164148
*/
165-
@Experimental
166149
def chiSqTest(data: RDD[LabeledPoint]): Array[ChiSqTestResult] = {
167150
ChiSqTest.chiSquaredFeatures(data)
168151
}

0 commit comments

Comments
 (0)