Skip to content

Commit 3a0f4a6

Browse files
committed
api/pyspark -> api/python
1 parent 35bdeb9 commit 3a0f4a6

File tree

3 files changed

+7
-7
lines changed

3 files changed

+7
-7
lines changed

docs/mllib-basics.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -78,13 +78,13 @@ MLlib recognizes the following types as dense vectors:
7878

7979
and the following as sparse vectors:
8080

81-
* MLlib's [`SparseVector`](api/pyspark/pyspark.mllib.linalg.SparseVector-class.html).
81+
* MLlib's [`SparseVector`](api/python/pyspark.mllib.linalg.SparseVector-class.html).
8282
* SciPy's
8383
[`csc_matrix`](http://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.html#scipy.sparse.csc_matrix)
8484
with a single column
8585

8686
We recommend using NumPy arrays over lists for efficiency, and using the factory methods implemented
87-
in [`Vectors`](api/pyspark/pyspark.mllib.linalg.Vectors-class.html) to create sparse vectors.
87+
in [`Vectors`](api/python/pyspark.mllib.linalg.Vectors-class.html) to create sparse vectors.
8888

8989
{% highlight python %}
9090
import numpy as np
@@ -151,7 +151,7 @@ LabeledPoint neg = new LabeledPoint(1.0, Vectors.sparse(3, new int[] {0, 2}, new
151151
<div data-lang="python" markdown="1">
152152

153153
A labeled point is represented by
154-
[`LabeledPoint`](api/pyspark/pyspark.mllib.regression.LabeledPoint-class.html).
154+
[`LabeledPoint`](api/python/pyspark.mllib.regression.LabeledPoint-class.html).
155155

156156
{% highlight python %}
157157
from pyspark.mllib.linalg import SparseVector

docs/mllib-guide.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -107,7 +107,7 @@ create sparse vectors.
107107

108108
We used to represent a labeled feature vector in a NumPy array, where the first entry corresponds to
109109
the label and the rest are features. This representation is replaced by class
110-
[`LabeledPoint`](api/pyspark/pyspark.mllib.regression.LabeledPoint-class.html), which takes both
110+
[`LabeledPoint`](api/python/pyspark.mllib.regression.LabeledPoint-class.html), which takes both
111111
dense and sparse feature vectors.
112112

113113
{% highlight python %}

docs/mllib-naive-bayes.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -102,11 +102,11 @@ double accuracy = 1.0 * predictionAndLabel.filter(new Function<Tuple2<Double, Do
102102

103103
<div data-lang="python" markdown="1">
104104

105-
[NaiveBayes](api/pyspark/pyspark.mllib.classification.NaiveBayes-class.html) implements multinomial
105+
[NaiveBayes](api/python/pyspark.mllib.classification.NaiveBayes-class.html) implements multinomial
106106
naive Bayes. It takes an RDD of
107-
[LabeledPoint](api/pyspark/pyspark.mllib.regression.LabeledPoint-class.html) and an optionally
107+
[LabeledPoint](api/python/pyspark.mllib.regression.LabeledPoint-class.html) and an optionally
108108
smoothing parameter `lambda` as input, and output a
109-
[NaiveBayesModel](api/pyspark/pyspark.mllib.classification.NaiveBayesModel-class.html), which can be
109+
[NaiveBayesModel](api/python/pyspark.mllib.classification.NaiveBayesModel-class.html), which can be
110110
used for evaluation and prediction.
111111

112112
<!-- TODO: Make Python's example consistent with Scala's and Java's. -->

0 commit comments

Comments
 (0)