@@ -130,7 +130,7 @@ class MatrixFactorizationModel(
130130 recommend(productFeatures.lookup(product).head, userFeatures, num)
131131 .map(t => Rating (t._1, product, t._2))
132132
133- override val formatVersion : String = " 1.0"
133+ protected override val formatVersion : String = " 1.0"
134134
135135 override def save (sc : SparkContext , path : String ): Unit = {
136136 MatrixFactorizationModel .SaveLoadV1_0 .save(this , path)
@@ -148,7 +148,7 @@ class MatrixFactorizationModel(
148148 }
149149}
150150
151- private object MatrixFactorizationModel extends Loader [MatrixFactorizationModel ] {
151+ object MatrixFactorizationModel extends Loader [MatrixFactorizationModel ] {
152152
153153 import org .apache .spark .mllib .util .Loader ._
154154
@@ -159,17 +159,18 @@ private object MatrixFactorizationModel extends Loader[MatrixFactorizationModel]
159159 case (className, " 1.0" ) if className == classNameV1_0 =>
160160 SaveLoadV1_0 .load(sc, path)
161161 case _ =>
162- throw new IOException (" " +
163- " MatrixFactorizationModel.load did not recognize model with" +
162+ throw new IOException (" MatrixFactorizationModel.load did not recognize model with" +
164163 s " (class: $loadedClassName, version: $formatVersion). Supported: \n " +
165164 s " ( $classNameV1_0, 1.0) " )
166165 }
167166 }
168167
169- private object SaveLoadV1_0 extends Loader [MatrixFactorizationModel ] {
168+ private [recommendation]
169+ object SaveLoadV1_0 extends Loader [MatrixFactorizationModel ] {
170170
171171 private val thisFormatVersion = " 1.0"
172172
173+ private [recommendation]
173174 val thisClassName = " org.apache.spark.mllib.recommendation.MatrixFactorizationModel"
174175
175176 /**
0 commit comments